toeplitz transforms of fibonacci sequences
Authors
abstract
we introduce a matricial toeplitz transform and prove that the toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. we investigate the injectivity of this transform and show how this distinguishes the fibonacci sequence among other recurrence sequences. we then obtain new fibonacci identities as an application of our transform.
similar resources
Toeplitz transforms of Fibonacci sequences
We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.
full textAn application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
full textFibonacci Sequences of Quaternions
In this paper Fibonacci sequences of quaternions are introduced, generalizing Fibonacci sequences over commutative rings, and properties of such sequences are investigated. In particular we are concerned with two kinds of Fibonacci sequences of generalized quaternions over finite fields Fp, with p an odd prime, and their periods.
full textFibonacci q-gaussian sequences
The summation formula within Pascal triangle resulting in the Fi-bonacci sequence is extended to the q-binomial coefficients q-Gaussian triangles [1, 2]. 1 Pisa historical remark The Fibonacci sequence origin is attributed and referred to the first edition (lost) of " Fiber abaci " (1202) by Leonardo Fibonacci [Pisano] (see second edition from 1228 reproduced as Il Liber Abaci di Leonardo Pisan...
full textFibonacci Convolution Sequences
(1-2) F<„'> £ FWFi , 1=0 However, there are some easier methods of calculation. Let the Fibonacci polynomials Fn(x) be defined by (1.3) Fn+2(x) = xFn+1(x) + Fn(x), Fo(x)~0, F7(x) = 1 . Then, since Fn(1)= Fn, the recursion relation for the Fibonacci numbers, Fn+2= Fn+i + Fn, follows immediately by taking x = I In a similar manner we may write recursion relations for {Fff^} . From (1.3), taking t...
full textOn Fibonacci-Like Sequences
In this note, we study Fibonacci-like sequences that are defined by the recurrence Sk = a, Sk+1 = b, Sn+2 ≡ Sn+1 + Sn (mod n + 2) for all n ≥ k, where k, a, b ∈ N, 0 ≤ a < k, 0 ≤ b < k + 1, and (a, b) 6= (0, 0). We will show that the number α = 0.SkSk+1Sk+2 · · · is irrational. We also propose a conjecture on the pattern of the sequence {Sn}n≥k.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 41
issue Issue 7 (Special Issue) 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023